
AFHRL-TP-90-78

AIR FORCE

OBJECT-ORIENTED SIMULATION ENVIRONMENT
FOR AIRBASE LOGISTICS

Lfl

H00 U Douglas A. Popken, Capt, USAF

IN M LOGISTICS AND HUMAN FACTORS DIVISION
A JWright-Patterson Air Force Base, Ohio 45433-6503< A

N

R November

Interim Technical Paper for Period December 1989 - September 1990E
SA.

L.

R Approved for public release; lstributlon is unlimited.

C
E
S

LABORATORY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5601



NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely Government-related procurement, the
United States Government incurs no responsibility or any obligation whatsoever.
The fact that the Government may have formulated or in any way supplied the said
drawings, specifications, or other data, is not to be regarded by implication, or
otherwise in any manner construed, as licensing the holder, or any other person or
corporation; or as conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

The Public Affairs Office has reviewed this paper, and it is releasable to the National
Technical Information Service, where it will be available to the general public,
including foreign nationals.

This paper has been reviewed and is approved for publication.

BERTRAM W. CREAM, Technical Director
Logistics and Human Factors Division

JAMES C. CLARK, Colonel, USAF
Chief, Logistics and Human Factors Division



Form AprovedfREPORT DOCUMENTATION PAGE OMB No. 0704-0l88

Puli n reporting burden for this collection of Information Ia estimated to average 1 hour per reaponse lnciudi the time for revieri instructions, seSciing existing data sources.
gathering and maintaining the data needed, and completing anid reviewng the collection -t information. Sen omments regardin i uren mate Or any other aspect of 1iscolslecion of information, including suggestions for reducing this burden, to Waslhington Headquafters Services. Directorate for Information Operations andl Reports, 1215 JeffersonDavis Highway. Suite 1204. Arlington, VA 22202-4302 and to the Office of Management and Budget, Pa.perwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I November 1990 Interim Paper - Dec 1989 to Sep 1990
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Object-Oriented Simulation Environment for Airbase Logistics PE - 62205F
PR - 1710

6. AUTHOR(S) TA - 00
WU - 50

Douglas A. Popken

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Logistics and Human Factors Division REPORT NUMBER

Air Force Human Resources Laboratory AFHRL-TP-90-78
Wright-Patterson Air Force Base, Ohio 45433-6503

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES
Paper presented at the Symposium of the Military Operations Research Society, Annapdis, Maryland, 10-12 June 1990.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13.-ABSTRACT (Maximum 200 words)
The Integrated Model Development Environment (IMDE) will address basic difficulties experienced in simulating

airbase logistics. These difficulties arise during two major modeling activities: (a) developing the conceptual model,
and (b) translating the conceptual model to a particular simulation software implementation. The difficulty of the
former activity is largely irreducible, a consequence of the inherent complexity of large, dynamic, and uncertain military
systems - such as airbase logistics. However, though the latter activity is also complex, key technologies have the
potential to simplify this part of the modeling process. This paper discusses how a synergistic combination of
object-oriented programming and data bases, graphical programming, software environments, and powerful
computer workstations may provide a breakthrough in simulation modeling capabilities. To further demonstrate
concepts, the paper describes an object-oriented simulation prototype of a subset of 'he airbase logistics domain.
The paper also discusses how the IMDE will be designed to meet the needs of airbase logistics modelers with widely
differing capabilities and mission requirements. This is to be accomplished by providing different modeling "levels,"
each with its own user interface, skill requirements, and degree of access to modeling tools. The paper concludes
with a discussion of the current status of IMDE development efforts.

14. SUBJECT TERMS 15 NUMBER OF PAGES
aircraft maintenance high-level languages simulation 20
artificial intelligence logistics planning 16. PRICE CODE
data bases man-computer interface

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT UL
Unclassified Unclassified Unclassified I I

NSN I40-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescnbed by ANSI Sid. Z39-18
298-102



AFHRL Technical Paper 90-78 November 1990

OBJECT-ORIENTED SIMULATION ENVIRONMENT
FOR AIRBASE LOGISTICS

Douglas A. Popken, Capt, USAF

LOGISTICS AND HOMAN FACTORS DIVISION
Wright-Patterson Air Force Base, Ohio 45433-6503

Reviewed by

Wendy B. Campbell

Chief, Logistics Systems Branch

Submitted for publication by

Bertram W. Cream, Technical Director
Logistics and Human Factors Division

Paper presented at the Symposium of the Military Operations Research Society, Annapolis, Maryland,
10-12 June 1990.



SUMMARY

Military systems are often difficult to model because of the inherent complexity of the

problem domain. However, although formulation of the conceptual model is unavoidably

complex, implementation of the model in software need not be. This concept provides
the basis for the distinction between what this paper refers to as "essential modeling

complexity" and "accidental modeling complexity." Essential modeling complexity
describes the inherently intractable process of specifying the conceptual model, made all
the more difficult when the systems being modeled are large, dynamic, and uncertain.

On the other hand, accidental modeling complexity is potentially avoidable. It is partially
the result of artificial constraints imposed on the modeler by inefficient user-computer

interfaces such as text-based programming languages, card-oriented data input, and
tabular outputs. It also results from the conceptual "mismatch" between the structure of

the systems being modeled and the way software is typically structured.

The Integrated Model Development Environment (IMDE) is a proof-of-concept software

prototype being developed to explore the potential for minimizing accidental modeling

complexity. It will attempt to exploit several key technologies: object-oriented
programming and data bases, graphical programming, software environments, and
powerful computer workstations. Object-oriented software technologies are particularly
promising because of their ability to provide a close match between the structures of

complex, hierarchical "real world" systems and a hierarchical software structure. This
concept is demonstrated with an object-oriented simulation prototype of a subset of the
airbase logistics domain. While the research effort is primarily geared to airbase logistics
modelers, the key enabling technologies have broad application to simulation modeling

in general.
Acoession For
NTIS GRA&I

DTIC TAB
Unannounced 0
Justification

By--
...Distribution/

Availability Codes

J Iva 1-1- nd_/ r_... st Special



PREFACE

The object-oriented simulation environment described in this paper is being developed through an
AFHRL research and development contract - Integrated Model Development Environment (IMDE).
The prime contractor for IMDE is The Analytical Sciences Corporation (TASC). This contract
effort is the major component of a larger research project known as Productivity Improvements in
Simulation Modeling (PRISM). The objective of PRISM is to develop advanced simulation
technologies for improved logistics capability planning and evaluation. PRISM also currently
includes research into object-oriented data management as well as techniques for aggregating
simulation processes. The purpose of this paper is to document the current conceptual view of
IMDE and how it contributes to PRISM objectives. The "Four-Level Concept" described herein
was conceived by Bob Powell of TASC.

ii



I. INTRODUCTION

Simulations are often used to model complex systems. Consequently, simulation
approaches have been used to solve problems in a variety of applications, including
manufacturing, materials handling, transportation, and defense. Some of the problem areas
investigated by military modelers have included battle planning, wartime operations,

weapons procurement, force sizing, human resource planning, logistic planning, and

national policy analysis (Hughes, 1984). Military systems are often particularly difficult to
model because of their frequently large scale and scope, number of interactions and levels
of hierarchy, and the uncertainties of wartime dynamics; thus, typical problems are rarely
amenable to strictly analytical approaches. For this reason military modelers have often
turned to building simulation models for use as decision support aids in planning, analysis,

and problem diagnosis.
While simulation has provided military modelers with a means to model complex

systems, their use has not necessarily simplified the modeling task. In fact, large-scale

military simulation models have tended to be inherently troublesome and complex, for
reasons both technical and organizational in nature. Brewer and Shubik (1979, pg. 25) had

the following to say about large computer simulation models in the Department of Defense:

Large computer programs, like large cathedrals, may be built by generations
of unnamed workmen using rudimentary plans and developing technologies,
subject to the vagaries of changing doctrines and leadership. With large
simulations, unfortunately, unlike large cathedrals - where divine guidance
was available and fairly simple empirical tests could be performed to find out
whether the arches held - the whole structure may collapse or become
meaningless without anyone realizing it until many years later. New
computer technology has vastly increased our ability to model human affairs,
but the abuse of simulation will continue so long as confusion remains
between the ability to build large models and the ability to build, understand,
and control large models appropriate to the questions being studied.

Recognizing these problems, the Military Operations Research Society organized a

series of workshops, SIMTECH-97, to identify and prioritize simulation deficiencies,
identify and assess technologies that may ameliorate these deficiencies in a time frame out

to 1997, and to recommend follow-on actions (Brady, 1989 ). Research by the Air Force
Ituman Resources Laboratory (AFHRL) on models used for Air Force logistic planning
found many of the existing models "difficult to use, insufficiently documented, and
difficult to modify, and to require inordinate amounts of data preparation" (Popken, 1988).



It should be noted, however, that these problems are by no means limited to the realm of

military simulation models. Simulation models have often been described by analysts and

modelers outside of the military as a "tool of last resort" because of their general tendency

to be costly, labor intensive, and error prone (Balci & Nance, 1987).

In response to difficulties experienced in modeling Air Force logistics systems, and to

the continuing need for simulation models for this purpose, AFHRL has initiated a research

thrust known as the Productivity Improvements in Simulation Modeling (PRISM) project.

The objective of the PRISM effort is development of a prototype "simulation modeling

environment." A proof-of-concept prototype of this environment is being developed with

The Analytical Sciences Corporation through the Integrated Model Development

Environment (IMDE) contract. The basic idea is to provide an integrated software

environment for efficient development, execution, analysis, modification, and overall

management of simulation models. The idea is consistent with the concept of a simulation
"workbench" outlined in the final report of the Workbench Working Group of SIMTECH-

97 (Gilmer & Kameny, 1989).

While the basic idea of simulation environments is not new, the PRISM project would

depart from previous efforts in its combined use of the "object-oriented" software

paradigm, high-level graphical programming and user interfaces, and powerful computer

workstations. The unique qualities of object-oriented software will enable users of the

environment to rapidly construct models from modular, reusable component objects.

Particular emphasis will also be placed on human engineering and cognitive criteria in the

design of the user-computer interface. The synergistic effects of integrating the various

features of a graphics-based object-oriented simulation environment within a powerful

computer workstation may well lead to breakthroughs in simulation modeling capabilities.

While the effort is primarily geared to airbase logistics modelers, the key enabling

technologies under current research have broad applicability to simulation modeling in

general.

This paper will describe the major functions and features of the simulation modeling

environment being developed by AFHRL. The paper will begin with a discussion on

modeling complex systems and then bhow how the major features of the developing

simulation modeling environment could reduce the complexity experienced by military

modelers or analysts. Following this, the paper will discuss implementation issues relevant

to airbase logistics modeling. The paper will conclude with remarks on future development

plans.



II. MODELING COMPLEX SYSTEMS

Software construction involves tasks that are essential, relating to the composition of a

conceptual model of a system, and tasks that are accidental, relating to the translation of the

conceptual model into a particular computer programming language. Computer
programming is inherently complex; in fact, complexity is an essential, not accidental,

characteristic of software (Brooks, 1987). Furthermore, as the number of software
elements in a computer program increases, program element interactions, and thereby,
program complexity, increase exponentially. Being a type of software, simulation models
have these same basic characteristics. By implication then, the complexity of simulation

software increases exponentially with the size of the model.
In typical military problem domains, the systems being modeled are often large,

complex, and involve many possible states and interrelationships; thus, the abstract
conceptual model itself invariably tends to be highly complex. This "essential modeling
complexity" is unavoidable. On the other hand, "accidental modeling complexity" is
potentially avoidable. This term refers to the gap between conceptual models and
implementation of those models in computer programming languages. Part of this gap
results from the characteristics of existing user-computer interfaces. Examples include text
based computer programming languages, card-oriented data entry procedures, and output
in the form of voluminous printouts of columnar data.

Improper specification of the conceptual model can also lead to a type of accidental
modeling complexity. This is the result when the modeler fails to represent only the
essential aspects of a physical system in the conceptual model. Part of the difficulty lies in
the inherent mismatch between the structures of "real world" systems and the typical
structures of the software models of these systems. This mismatch is reflected in the
inconsistency between object-oriented and functional decomposition analyses (Coad &
Yourdon, 1990), two of the structured analysis techniques available for analyzing the
physical domain . This type of accidental modeling complexity can also result from an
inability to properly limit the scope of a model to the immediate problem.

As modeling is as much an art as a science, accidental modeling complexity is hard to
measure. In the case of military simulation models, what can be said is that accidental
modeling complexity is a frequent byproduct of what shall be referred to here as the

I Here we will borrow the terms "essential" and "accidental" from Brooks, but extend their original
definitions to apply to the process of mapping physical systems to computer simulation models.

3



"standing model paradigm." The term "standing model" refers to a computer model,
typically large scale, that is designed to be used over time to address a fixed set of repetitive

problems. The basic idea behind using such a model is to avoid having to recreate a new

model for every problem; only the input data and certain parameters are adjusted. A large
number of simulation models used by the military are operated in this way (Joint Staff (J-

8), 1989). Such an approach can be viewed as a practical response to a decision-making

environment constrained by time and by the computer technology available in the 1960's
and 70's. The main drawback to this approach is the lack of capability to focus on only the

essential elements of a problem. "Instead of trying to determine in advance which were the
important variables, their [military analysts] brute-force method treated all variables as
important and assumed that the computer would overpower nature. As usual, nature won,

overwhelming the computer and the analyst with her complexity." (Hughes, 1984, pg. 22)
While there have been major advances in computer technology since the 1960's,

particularly in computer hardware, the standing model paradigm still dominates DoD. This
is largely a result of bureaucratic tendencies towards caution (Komell, 1987) and the

relatively slow rate at which new technology enters nonoperational military domains. New
complexity-reducing modeling paradigms are now needed to exploit the potential of

emerging computer technologies

The PRISM effort attempts to reduce modeling complexity, and thereby increase

productivity, by minimizing accidental modeling complexity. To understand how this can

be achieved, it is useful to initially discuss the environment's proposed features under the

categories of its primary enabling technologies: object-oriented programming, graphical

programming, object-oriented data bases, software environments, and workstations. No
one of these features will likely bring about an order of magnitude increase in modeling

productivity; however, their thoughtful integration would make the potential for this very

real.

II. ENABLING TECHNOLOGIES

Object-oriented Prommming

The basic argument for object-oriented programming is its ability to deal with

complexity. Software, of which simulation models are one type, is inherently and often
arbitrarily complex (Booch, 1990). As can easily be the case with the "standing models"

discussed above, the complexity of software can exceed the human intellectual capacity.

4



Object-orient-i software incorporates the concepts of modularity and hierarchical

structure. ' ,dularity is accomplished through the encapsulation of procedures and data

into software "objects" that communicate only through passing "messages" among

,hemselves. Objects represent "instances" of some particular class of objects.

Relationships between classes can be defined through a class hierarchy, whereby

specialization and detail increase as one traverses from the root to the leaves in the

hierarchical tree (Figure 1). Only those elements essential to defining unique state and

behavioral characteristics are implemented in a given class. All other characteristics are

"inherited" from higher level classes in the hierarchical tree.

object

Figure 1. A Hierarchy of Object Classes

The object-oriented paradigm reduces the complexity of simulation models through

encapsulation and hierarchical structuring of components. These characteristics are

particularly relevant to simulations for several reasons. First, simulations usually model

some physical system in the "real world". Such systems can be viewed in terms of two

orthogonal hierarchies: 1) objects and their component parts, and 2) classes of objects and

their subclasses. In object-oriented simulation, the physical objects and their associated

hierarchies in the modeled system will often have direct counterparts in software objects

and hierarchies. An understanding of relationships between objects in the physical domain

can then be more easily translated into relationships within the software domain. This

5



mapping characteristic allows the physical world, the conceptual model, and the software

implementation to use a consistent organizing framework.
Second, in the real world, complex hierarchic systems tend to be composed of relatively

few types of subsystems. The perceived complexity results largely from merely arranging

the subsystems in different ways. Object-oriented simulations of these physical systems
are similar in this respect. This feature, along with inheritance, allows a developer to focus

on essential details of the model.
Third, modularity localizes the effects of-any necessary modification of the simulation

software. Modification of simulation models may be frequent, resulting from changes in
the application domain or in the way the domain is being modeled. Modularity allows the
developer to concentrate on only the essential details of modification.

A number of programming languages have been developed to directly support the object-

oriented paradigm, including Simula, SmallTalk-80, C++, Objective-C, MODSIM II, and

various object-oriented extensions to the LISP language such as Flavors and Scheme.
Though often described as an "object-oriented" language, the Ada language is not part of

this group because it does not support classes or inheritance.

Selection of a particular object-oriented language involves tradeoffs among criteria such
as flexibility, expressive power, run-time performance, and portability. C++ and
MODSIM H are being considered as the underlying language for the prototype Integrated

Model DEvelopment Environment (IMDE). Both of these languages have good run-time

performance, wide portability, and the ability to interface with traditional programming
languages such as C. C++ is becoming the predominant language in commercial object-

oriented applications for similar reasons. For IMDE this would mean greater opportunities

for incorporating or interfacing with commercial off-the-shelf software components. On

the other hand, MODS.IM H1 is attractive because of its built-in simulation class libraries.

Graphical Progmamming

Graphical programming refers to computer programming through manipulation of

symbolic images on a computer screen. The primary motivation of graphical programming
in the PRISM effort is simplification of the user-computer interaction rather than animated

portrayal of the simulation. Most readers of this paper are already familiar with the
simplest example of graphical interaction, selection of options from a "menu" of choices.
The IMDE effort will go much further than this to include representation of complex

relationships between simulation objects. For example, relationships could be defined in a
temporal sense, as would be the case for a network of simulated activities, or in the sense

6



of object aggregations, whereby objects are identified as part of some larger group1 (Figure
2). Modelers would manipulate on-screen objects to define their characteristics and
interrelationships. The graphical models will be translated automatically into executable
simulation programs. The SmalTalk-80 programming environment is a current example of
an object-oriented system capable of these types of interaction.

Graphical representation of complex modeling relationships provides rapid and

straightforward feedback on the status of model construction. The gap between the

conceptual model and its implementation is then greatly reduced, particularly when the
graphical programming interface is consistent with the conceptual model. A number of

activity network-based versions of this approach already exist in commercial form for
standard simulation languages (Bell & O'Keefe, 1987). Initial research has demonstrated

the feasibility of using "activity cycle diagrams" (Ozden, 1990) as a graphical
representation of object-oriented simulation models.

iIs par ofro
Is a part of

Figure 2. A Graphical Representation of an Object Aggregation Hierarchy

I This type of object relationship, often referred to as "is a part of," is in contrast to the "is a kind of"
relationship defined by the class hierarchies discussed in the previous section.

7



Object-oriented Data Bases

An object-oriented data base (see, for example, Zdonik & Maier, 1990) provides
persistence for simulation objects. Without it, objects exist as objects only as long as the
simulation program is running; they would have to be either manually or automatically
reconstructed at each execution from "flattened" data structures. Because of the resulting
"mismatch," run-time efficiency would be degraded; complex data retrieval statements

would be needed to translate, say, relational data, to object form and vice versa. Further,
system management of data would be more difficult, particularly if objects are being shared

between users or platforms.
An object-oriented data base contains objects that may vary in size and structure to nearly

any arbitrary degree. Complex structures and compound objects can be represented

directly. Objects can simultaneously hold text, numbers, and bit-map representations of

data.

These features of object-oriented data bases will help support rapid construction of

simulation models in IMDE. A modeler will be able to browse through a data base
hierarchy of validated objects (including compound objects), select those most appropriate
to his problem, and iteratively build and refine a model composed of these objects. This
implies that prior modeling knowledge and expertise are captured for reuse at the object
and at the compound object level. This would be a distinct improvement over the "standing
model paradigm," where the entire model must be retained as the atomic unit of reusable

experience. The resulting potential for complexity reduction is clear to anyone who has
attempted to modify the source code of a large computer program written by another

programmer.

Commercial object-oriented data bases are only now reaching adequate levels of maturity
and robustness. A number of vendors now have good quality systems available. It has not

been determined whether IMDE will use a commercial off-the-shelf object-oriented data
base or a custom-developed object-oriented data base.

Software Environments

A software environment provides an organizing framework for the software tools needed
to implement the enabling technologies discussed above. The environment will provide an
integrated set of tools for development, execution, analysis, modification, and overall

management of simulation models. The object-oriented data base at the core of the

8



environment will work through the environment to provide an integrated repository for all

simulation model and project information. The environment will include a consistent and

easy-to-use graphical interface.

Higher level features of the IMDE include its support for rapid prototyping and its

emphasis on the overall modeling process. In general, rapid prototyping is used to address

the fact that system requirements are never fully known at the outset of a development

effort. In modeling airbase logistics, as well as other modeling efforts, the end user of

simulation derived data may specify the desired information in only the most general terms.

Rapid prototyping allows iterative specification of requirements. Each iteration

incorporates feedback on the performance and desirability of the features of each successive

prototype.

IMDE is being designed to support rapid prototyping and incremental development of

simulation models through the graphical and object-oriented programming techniques

described previously in this paper. Graphical programming allows immediate visual

feedback on the current state of development and direct evaluation of the current conceptual

model of the simulated system. The object-oriented paradigm supports rapid prototyping

by providing standardized, pretested software modules in the form of objects. New classes

are created quickly as extensions of existing classes. The model builder can then confine

his attention to integration of subassemblies, allowing rapid construction or modification of

larger model assemblies.

Rapid prototyping reduces complexity by dividing system specification into manageable

portions, where each portion corresponds to an iteration in the development process. To

paraphrase a basic mathematical principle, since the complexity of a simulation model

increases in a greater than linear (convex) fashion with its size, the "sum of the

complexities" of individual development iterations is much less than would be the

complexity of developing a total system in a single cycle.

An additional high-level characteristic of the environment will be its emphasis on the

modeling process rather than on the models alone. That is, IMDE will be designed to

reinforce the notion that the simulation model is but one component of the analysis process.

The simulation model "merely" generates the experimental data. The data must then be

statistically analyzed to determine whether some statistical hypothesis regarding the

modeled system has been reasonably satisfied. This process typically involves numerous

iterations.

IMDE is also being designed to accommodate the varying modeling needs of a

potentially diverse set of users; however, this topic will be discussed more fully in a

following section "The Four-Level User Concept".

9



Workstations

Modem computer workstations provide the computational power needed to drive object-

oriented simulations with reasonable ease. High-speed machines are desirable due to the

relatively slow performance of object-oriented software when compared to traditional

programming languages. Graphics generation requirements place additional burdens on the

system. Workstations also provide support for refined networking, access control, and

security features that are not found at the PC hardware level. The prototype IMDE will
reside on a SUN-4 workstation. However, portability across other workstations will be a

primary design goal.

IV. IMDE USER CONSIDERATIONS

Modeling Airbase Logistics

The initial target application domain for IMDE is airbase logistics modeling. This

domain encompasses the logistics processes that directly support aircraft sortie generation

at an operational airbase. This would include such things as aircraft maintenance, parts

supply, and munitions loading. Logistics models of this type have been used for studies in

aircraft acquisition planning, maintenance manpower allocation, and theatre-level supply

redistribution.

The specific problem scenarios modeled in this domain are diverse. A typical example

in acquisition planning might be determining the effects of introducing a new version of an

aircraft component part with a greater mean time between failure and/or a shorter average

repair time. In a simulation model of this problem, sorties are generated and aircraft return

to base with parts (including the one in question) having failed according to some

probability distribution. The aircraft then goes through the maintenance processes

necessary to return it to flying status and additional sorties. Thus, all other parameters held

constant, a relationship between component part characteristics and sortie generation rates

can be statistically estimated. Similarly, all manner of proposed aircraft characteristics,

components, processes, and policies can be tested in relation to their potential effects on

sortie generation rates.

10



The airbase logistics problem domain can be decomposed using the techniques of object-

oriented analysis (Coad & Yourdon, 1990). Figure 3 illustrates representative features of

one possible decomposition. A prototype object-oriented simulation using a more complete

version of this hierarchy has been developed by the author in the SMALLTALK-80

programming environment.

At the top of the object hierarchy depicted in Figure 3 is the generic class, Object.
Classes at lower levels of the hierarchy show greater specialization. Under the object-

oriented paradigm new classes may be created as a specialization of an existing class. For

example, to introduce a new type of aircraft to the simulation domain, a specialization of the

existing class, Aircraft, is created. The new class will inherit state and behavior

information from the generic Aircraft class. Only information unique to the new class of

aircraft must then be entered into the system.

Object

Strearn

e ResurceSimulation ,.leti

(raskNod Arrf

Aicafi r soew

F-15 F- 16Egn ircrew CGroundcrew

Figure 3. Representative Object Classes in Airbase Logistics Simulation

In object-oriented simulation modeling there are typically classes representing domain

specific objects, such as Aircraft, and general classes of more abstract objects that support

the desired interactions of the domain objects and the simulation process itself. For

11



example, Figure 3 includes the class, ProbabilityDistribution. This class responds to

messages that access random variables, parameters, moments, etc. Subclasses of
ProbabilityDistribution would implement behaviors for specific probability density

functions. Also note the classes TaskNode and TaskNetwork. These classes can be
used to implement probabilistic sequencing of activities. Other classes of abstract objects
are used to implement basic simulation processes such as queuing and event scheduling.

The Four-Level User Concept

As is the case with the models themselves, the organizations using airbase logistics

models are diverse, having a wide range of missions, requirements, and resources.
Personnel may have widely varying levels of experience and education. At one end of the
personnel spectrum are pure model users: those with no formal education in simulation,

statistics, or systems modeling techniques, but who have been trained to perform simple
parametric studies with a given simulation model. At the other end of the spectrum are

model developer/users: people with the requisite background to use models, build models,

or given enough time, modify existing simulation models. Because the group of potential
users is so diverse, an object-oriented simulation environment would not automatically be

suitable for all potential using organizations or users, despite its advantages.
The PRISM effort will attempt to maximize the potential user base through a "Four

Level" user concept (Figure 4). Under this concept, the amount of modeling expertise

required of the user depends on the degree of access to system functionality and capabilities

desired by that user. Higher levels allow greater access. To maintain model integrity,

access to higher levels in the environment will be limited to only those with the necessary

expertise. At each of the four levels, the user interface will be consistent with the user's
view of his tasks, goals, objectives, and expertise.

Level I, the "User Level," will require the least amount of expertise. Here, model users

will be able to perform simple parametric studies with predefined simulation models and

statistical analysis tools. This level will be designed to encourage "learning by doing."
The Level I user will not be given access to higher levels.

Level 1I, the "Analyst Level," is where specific objects may be selected from an object-

oriented component library contained within the object-oriented data base. Specific models

are built, tested, and then compiled for distribution to Level I. No access is provided to

higher levels.

12



LEVEL IV - UTILITY LEVEL

LEVEL III - DEVELOPER LEVEL
LEVEL II - ANALYST LEVEL

LEVEL I - USER LEVEL

Figure 4. Four-Level Concept

Level III, the "Developer Level," will allow building, testing, and validating of new

simulation objects for lower levels. Using the object-oriented paradigm, new objects are
defined as specializations of already existing object classes. Access to object procedures,

or "methods" as they are known, will allow model interactions and relationships to be

altered. The Level III user will be given limited access to Level IV.

Level IV is the "Utility Level." Here, access is provided to the underlying software

environment. General tools such as linkers, compilers, code generators, and others are

available to qualified people.

V. PRESENT STATUS AND FUTURE PLANS

Preliminary investigation of object-oriented data bases, graphical programming, and

object-oriented design of the airbase logistics domain has demonstrated the viability of the

PRISM concept. In March of 1990 a three-year effort was initiated to develop a proof-of-

concept Integrated Model Development Environment. The objective of Phase I of this

contract effort is to produce a detailed description of system requirements. Particular

emphasis is to be placed on analyzing high risk areas, of which there are several. Foremost

among these is in the design of the user-computer interface. The interface must

simultaneously be both powerful and easy to use. It must also be designed to support, and
to a degree, enforce good modeling practice. Note also that the Four-Level concept

13



described above implies that IMDE will have not just one, butfour different user
interfaces.

The design of the object-oriented data base and its interface with the rest of the system is

another high risk item. The data base must be designed such that data management is both

efficient and transparent to the user. That is, users need not concern themselves with

whether data objects reside in memory or in secondary storage.

A number of other design considerations will center around modeling issues. These
include but are not limited to providing for sound statistical analysis of output data without

simultaneously making the process overly complex or cumbersome, providing the analyst

with the ability to model at variable levels of detail, and reconciling the "information
hiding" characteristic of objects with the need to make modeling assumptions known to the

user. Clearly, an object-oriented simulation environment is rich with potential research

issues.

IMDE is being developed using rapid prototyping techniques. Early prototypes will

concentrate on the modeling interface. A demonstration of a preliminary prototype of major

portions of the environment is scheduled for September 1991.

14



REFERENCES

Balci, 0. & Nance, R. (1987). Simulation support: prototyping the automation based
paradigm. In Thesen, A., Grant, H., and Kelton, W. (Eds.). Proceedings of the 1987
Winter Simulation Conference (pp. 495-502). Atlanta, GA: Society for Computer
Simulation.

Bell, P. & O'Keefe, R. (1987). Visual interactive simulation - history, recent
developments, and major issues. Simulation 42(3), 109-116.

Booch, G. (1990, January). Object-oriented design. Notes from tutorial course presented
at Seminars and Conferences in Object-oriented Programming (SCOOP), Santa Clara, CA.

Brady, E. (1989). SIMTECH-97: an overview. Phalanx, 22(1), 19.

Brewer, G. & Shubik, M. (1979). The war game. Cambridge, MA: Harvard University
Press.

Brooks, F., Jr. (1987). No silver bullet: essence and accidents of software engineering.
Computer, 2(4), 10-19.

Coad, P. & Yourdon, E. (1990). Object-oriented analysis. Englewood Cliffs, NJ:
Prentice-Hall.

Gilmer, J. & Kameny, 1. (1989). SIMTECH-97 report of the workbench working group.
Phalanx, 22(4), 30-33.

Hughes, W. (Ed.) (1984). Military modeling. Alexandria, VA: Military Operations
Research Society.

Joint Staff - Force Structure Resource and Assessment Directorate (J-8) (1989). Catalog of
wargaming and military simulation models (AD-A213970). Washington, D.C.

Komell, J. (1987). Reflections on using knowledge based systems for military
simulations. Simulaton, 4a(4), 144-148.

Ozden, M. (1990). Graphical programming of simulation models in an object-oriented
enmnt. Paper presented at a meeting of the Society for Computer Simulation,
Nuremberg, FRG.

Popken, D. (1988). Productivity improvements in simulation modeling: concepts and
motivatins (AFHRL-TP-88-3 1). Wright-Patterson AFB, OH: Logistics and Human
Factors Division, Air Force Human Resources Laboratory.

Zdonik, S. & Maier, D. (Eds) (1990). Readings in object-oriented database systems. San
Mateo, CA: Morgan Kaufmann Publishers.

15


